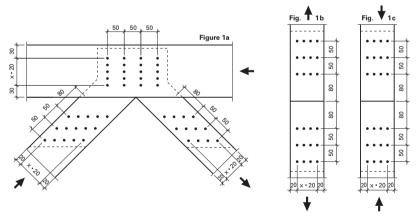
Application de base des fixations WS



Des avantages convaincants

- Grande résistance mécanique
- Facilité de mise en œuvre
- Assemblage métal / bois
- Haute résistance au feu
- Résistance axiale et latérale des fixations

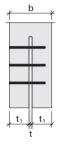


Remarques générales :

- Le système WS est prévu pour des tôles d'acier (capacité de perçage des tôles max. 3 x 5 mm ou 1 x 10 mm) de nuance S 235. La mise en œuvre d'acier de qualité supérieure peut poser des problèmes lors du perçage des tôles. Nous vous recommandons donc de nous soumettre l'application avant d'opter pour un tel choix. Pour assurer une sécurité optimale du système, nous recommandons l'utilisation exclusive de nos appareils de pose WS. Lors de la mise en œuvre de broches WS avec l'appareil de pose manuel, il faut prêter une attention particulière à une mise en place parfaitement perpendiculaire aux tôles.
- Si la qualité ou l'épaisseur de la tôle métallique est différente (t_b,min = 3 mm) la résistance doit être calculée suivant la norme EN 1995-1-1:2004/A1, chapitre 8 avec M_{y,Rk} = 31,93 Nm. Il faut prendre en compte la portance réelle de la broche en enlevant la longueur de la pointe autoperceuse et le bois non percé (19 mm) sur t₁.
- La section résiduelle de la plaque métallique doit être vérifiée. Pour des tôles métalliques comprises entre 3 mm et 5 mm il faut vérifier la transmission des efforts sur la tranche du trou.
- Les efforts en traction pour les connections doivent être vérifiés pour la section nette (sans entailles). Cette vérification doit être faite séparément pour le tenon central et les tenons latéraux en tenant compte des efforts transmis par les broches. La rupture de bloc doit être vérifiée.
 Il faut tenir compte d'annexe nationale

Valeur caractéristique de la capicité résistante Rk en kN par broche

Disposition des broches :


Distances	Entre broches		extré	mité	Rive		
minimales	II ±		chargée	non chargée	chargée non chargé		
	$a_1 = 50 \text{mm}$	a ₂ = 20mm	a _{3,t} = 80mm	a _{3,c} = 80mm ¹	a _{4,t} = 30 mm	a _{4,c} = 20mm	

Dépendent de l'angle α entre la direction de l'effort et le fil du bois une réduction est possible suivant l'EN 1955-1-1.

Conditions pour l'utilisation des tableaux 2, 3 et 4 :

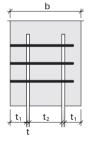

- Largeur de l'entaille t = 6-7mm, 1 tôle : $t_{max} = 12 mm$
- Epaisseur de la tôle $t_b = 5$ mm, 1 tôle : $t_{b, max} = 10$ mm
- Qualité de l'acier S235
- Broches disposées perpendiculairement aux fibres
- Classe de service 1 ou 2
- Qualité de bois GL 24h
- Respect des espacements et distances minimum (tableau 1 et figure 1)

Figure 2

$\label{eq:Valeurs} \textbf{Valeurs caractéristiques de la capacité résistante } \textbf{R}_k \ \textbf{en kN} \ \textbf{par broche en double cisaillement}$							t	ableau 2		
Broche	WS-T	7x73	7x93	7×113	7x133	7×153	7x173	7×193	7x213	7x1233
Largeur du bois	b en mm	80	100	120	140	160	180	200	220	240
Bois extérieur	t ₁ en mm	34	44	54	64	74	84	94	104	114
Bois intérieur	t ₂ en mm	-	-	-	-	-	-	-	-	-
α angle entre la	0°	7.22	8.48	9.61	10.69	11.38	11.78	11.78	11.78	11.78
direction de l'effort	30°	6.61	7.86	8.26	9.98	10.58	11.16	11.16	11.16	11.16
et le fil du bois	45°	6.10	7.36	8.18	9.21	9.93	10.50	10.63	10.63	10.63
	60°	5.68	6.93	7.65	8.56	9.37	9.89	10.17	10.17	10.17
	90°	5.32	6 57	720	8 01	8 89	9.36	9 77	9 77	9 77

Figure 3

Valeurs caractéris	$\label{eq:Valeurs} \mbox{Valeurs caractéristiques de la capacité résistante } \mbox{R}_{\mbox{\tiny k}} \mbox{ en kN par broche en quadruple cisaillement } \mbox{ tableau 3}$									
Broche	WS-T	7x73	7x93	7×113	7x133	7x153	7x173	7×193	7x213	7×1233
Largeur du bois	b en mm	80	100	120	140	160	180	200	220	240
Bois extérieur	t ₁ en mm	-	-	-	40	40	55	60	65	75
Bois intérieur	t ₂ en mm	-	-	-	48	68	58	68	78	78
α angle entre la	0°	-	-	-	18.00	19.79	21.52	22.17	22.54	23.23
direction de l'effort	30°	-	-	-	16.43	18.74	19.64	20.67	21.21	21.81
et le fil du bois	45°	-	-	-	15.15	17.75	17.99	19.42	19.95	20.62
	60°	-	-	-	14.09	16.91	16.62	18.36	18.84	19.60
	90°	-	-	-	13.15	15.97	15.47	17.28	17.87	18.71

Figure 4

Basis: EN1995-1-1:2004+AC:2006+A1:2008

Valeurs caractéris	tiques de	la capaci	té résista:	nte R _k en	kN par br	oche en s	extuple ci	saillement	tab:	leau 4
Broche	WS-T	7x73	7x93	7x113	7x133	7x153	7x173	7×193	7x213	7×1233
Largeur du bois	b en mm	80	100	120	140	160	180	200	220	240
Bois extérieur	t₁ en mm		-	-	-	-	39	39	43	53
Bois intérieur	t ₂ en mm		-	-	-	-	42	52	58	58
α angle entre la	0°	-	-	-	-	-	25.33	29.44	31.96	33.05
direction de l'effort	30°	-	-	-	-	-	23.02	26.71	29.19	30.12
et le fil du bois	45°	-	-	-	-	-	21.13	24.48	26.71	27.51
	60°	-	-	-	-	-	19.50	22.56	24.65	25.35
	90°	-	-	-	-	-	18.05	20.88	22.91	23.51

Les valeurs caractéristiques de résistance au cisaillement $R_{\rm k}$ sont données pour un bois de qualité GL 24h.

Pour des bois de qualité différente, prondérez les valeurs avec les coefficients du tableau ci-contre.

Classe de résistance GL	C24	GL24h	GL28h	GL32h
ρ_k en kg/m ³	350	385	425	440
coefficient qualité du bois	0.94	1	1.06	1.09

Dans le cas de plusieurs broches sur la même file de bois, le nombre efficace $n_{\rm ef}$ doit être pris suivant le tableau ci-contre.

Les valeurs sont valables pour une distance entre broche parallèlement au fil du bois de 50 mm.

	n	1	2	3	4	5
	0°	1.00	1.61	2.31	3.00	3.66
$\boldsymbol{\alpha}$ angle entre	30°	1.00	1.74	2.54	3.33	4.11
la direction	45°	1.00	1.80	2.66	3.50	4.33
du effort et le fil du bois	60°	1.00	1.87	2.77	3.67	4.55
	90°	1.00	2.00	3.00	4.00	5.00

La valeur de calcul de la résistance en cisaillement des broches $R_{\rm d}$ se calcule comme suit, suivant l'EN 1995-1-1:2004/A1, chapitre 2 :

$$R_{\rm d} = \frac{R_{\rm k} \cdot k_{\rm mod}}{\gamma_{\rm M}} \mbox{ avec } \gamma_{\rm M} = 1.3 \mbox{ selon EN 1995-1-1:2004/A1, tableau 2.3}$$

Rigidité des assemblages

Le module de glissement par plan de cisaillement K_{ser} doit être calculé suivant la norme EN 1995-1-1:2004/A1 chapitre7. Eventuellement il faut tenir compte d'annexe nationale.

Systèmes de fixation WS

Désignation	d	L	Ø tête	Empreinte
WS-T-7x73	7.0	73	11.0	T40
WS-T-7x93	7.0	93	11.0	T40
WS-T-7x113	7.0	113	11.0	T40
WS-T-7x133	7.0	133	11.0	T40
WS-T-7x153	7.0	153	11.0	T40
WS-T-7x173	7.0	173	11.0	T40
WS-T-7x193	7.0	193	11.0	T40
WS-T-7x213	7.0	213	11.0	T40
WS-T-7x233	7.0	233	11.0	T40

Outillage et accessoires

Embout	Machines de pose
T40-200-HEX 1/4" (200 mm de long)	ZL-WS
T40-M8	CF-WSP
T40-70-07-HEX1/4 ZA-1/4-CF-WS/M	CF-WS/M

